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A B S T R A C T   

We present a study on Covid-19 detection using deep learning algorithms that help predict and detect Covid-19. 
Chest X-ray images were used as the input dataset to prepare and train the proposed model. In this context, deep 
learning architecture (DLA) and optimisation strategies have been proposed and explored to support the auto-
mated detection of Covid-19. A model based on a convolutional neural network was proposed to extract features 
of images for the feature-learning phase. Data augmentation and fine-tuning with deep-feature-based methods 
were applied to improve the model. Image enhancement and saliency maps were used to enhance visualisation 
and estimate the disease severity level based on two parameters; degree of opacity and geographic extent. 
Contrast-limited adaptive histogram equalization and Otsu thresholding were employed with several parameters 
to investigate the effects on the visualisation results. An experimental investigation was performed between the 
proposed method and other pretrained DLAs. The proposed work obtained excellent classification accuracy and 
sensitivity of 97.36% and 95.24% respectively. In addition, the input parameters for image enhancement 
significantly affected the results. The overall performance metrics were perfect for DenseNet and adequately high 
for the proposed work which is comparable to other models. Data augmentation and fine-tuning successfully 
handed the networks to enhance the overall performance, especially in our case with limited datasets.   

1. Introduction 

Like any other country in this world, Indonesia could not escape from 
the corona-virus disease-19 (Covid-19); moreover, it has been witness-
ing an increasing number of infected people. As the fourth largest pop-
ulation in the world, Indonesia has a high risk of exposure. However, 
China, as the country with the largest population, employs artificial 
intelligence (AI)-assisted computed tomography (CT) imaging analysis 
to investigate Covid-19 cases and streamline diagnosis [8]. Since then, 
several research groups have launched AI initiatives to enhance the 
prediction of Covid-19 by exploiting clinical data and basic chest X-ray 
(CXR) images to create a predictive model. In this study, on the basis of 
Wang, Lin and Wong (2020), and to the best of our knowledge, 
Indonesia does not have any research study center that uses clinical data 
such as CXR images; by contrast, a prototype of a deep learning model 
with visualisation features has been built as a platform to predict 
Covid-19. 

The rest of this study is organised as follows: Section 2 provides in-
formation of the related work. Section 3 explains the proposed scheme. 
Section 4 evaluates the performance method. Section 5 provides the 
conclusions and some perspectives on future works. 

2. Related work 

Since the outbreak of corona-virus in December 2019, several re-
searchers from the fields of medicine, clinical, radiology, oncology, 
bioinformatics, and computer science have been working on this field. 

Artificial Intelligence (AI) can be as accurate as humans, can save 
time of radiologists [24], perform a quick diagnosis and is cheaper than 
standard tests for Covid-19. Chest radiography (CXR) and computed 
tomography (CT) scans have been used. CT yields the highest diagnostic 
sensitivity; however, it is very complex to employ in an intensive care 
unit environment and is likely to be unavailable to patients in countries 
with less developed healthcare systems. By contrast, CXR exhibits 
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inferior diagnostic sensitivity but is commonly available, minimally 
invasive, fast, and a reasonable tool to diagnose and monitor Covid-19. 
Several studies, such as [10,13,14,21]; have described the use of deep 
learning [12] to diagnose Covid-19 using X-ray and/or CT scan images. 
However, they used a simple model only [15]. proposed a framework 
based on built-in smartphone sensors e.g microphones, cameras, tem-
perature sensors, humidity sensors, inertial sensors, proximity sensors, 
colour sensors, and wireless sensors to detect Covid-19. However, these 
solutions are still far from being optimal as smartphone sensors exhibit a 
low level of accuracy and their technical properties may vary. 

Few initiatives have been considered in this regard. Owing to the 
demand for faster interpretation of radiography images, AI methods 
based on deep learning have been proposed, and the results are effective 
in detecting Covid-19 via radiography imaging, accompanied by CT 
imaging, in terms of accuracy [4,13,14,17,23]. In addition [21],devel-
oped an open-source network, known as Covid-Net, to detect Covid-19 
using X-ray images. It has been developed from ~ 13,000 images of 
patient cases, including Covid-19 positive cases. However, the authors 
have stated that Covid-Net is by no means a production-ready solution 
and needs an improvement. 

[10] proposed a deep convolutional neural network (CNN), known as 
CoroNet model (which is based on the works of [2] - the Xception ar-
chitecture pre-trained model), to automatically detect Covid-19 based 
on X-ray images. Their model is categorised into four classes: Covid-19, 
Normal, Pneumonia-bacterial and Pneumonia-viral. [16]; Acharya UR 
proposed a model based on DarkNet deep learning architecture DLA [6]) 
to detect and classify Covid-19 cases based on X-ray images. Their model 
obtained binary and 3-class classification accuracies of 98.08% and 
87.02%, respectively, on a dataset containing 125 Covid-19, 500 normal 
and 500 Pneumonia CXR images. In recent times, several initiatives have 
used DLA to diagnose Covid-19 based on CT and/or X-ray images. 

For the subset of diagnostic models based on medical imaging, we 
hypothesised that there are two main reasons for high risk of bias, i.e., a 
lack of information to evaluate selection bias and a lack of apparent 
reporting of image annotation procedures and quality control measures. 
Moreover, we observed a high risk of bias in all the studies and the re-
ported results were assured, and there were no visualisation features. 

We brainstormed recent studies that used deep learning or machine 
learning models to detect Covid-19; however, there is an obstacle which 
is the reliability of training data that captures the issue complexity, but 
does not lead to undetected bias in the model. Therefore, there is a need 
to reinforce predictive modeling with a visualisation features to improve 
the interpretability or perception of information in images to aid human 
viewers, i.e doctors. Consequently, this research focuses on how to 
enrich our own dataset, especially training data, build a model, and 
provide computer visualisation using image enhancement algorithms 

and saliency maps. 

3. Proposed work 

In this section we discuss the proposed method and its imple-
mentation, including the architecture design methodology, network 
architecture, and process of dataset preparation. 

3.1. UNAS-Net 

Motivated and inspired by the absence of a platform, in this study, we 
propose a model known as Universitas National Network (UNAS-Net), 
which is designed by the Nasional University, Jakarta, Indonesia, using a 
deep learning method based on a CNN to detect Covid-19 based on the X- 
ray images of patients in Indonesia; these images are collected in a 
centralised dataset (Fig. 1). 

Fig. 2 depicts the proposed method, including the main deep learning 
phases, such as preprocessing, data splitting, training, validation, and 
testing. These phases are explained in the following subsections. 

3.2. Dataset and model 

Machine learning requires a training dataset that is used to train the 
model. Before feeding the dataset, the first step was collect the specific 
data. We collected datasets form several sources (Table 1). 

However, these datasets include CXR and CT scan images of different 
formats and sizes. As we are interested in CXR images, we need to 
preprocess the datasets. For instance, we selected 349 of 481 CXR im-
ages of Covid-19 based on the works of [3]. Moreover, we collected 
images from other repositories, i.e., [1,21]. In addition, we collected 850 
CXR images from hospitals in Jakarta, i.e., Hospital of Christian Uni-
versity Indonesia, Duren Sawit Hospital and National Brain Center 
Hospital. All images were claimed as Covid-19 positive cases by doctors 
of three establishments. We admit that the dataset is small owing to the 
lack of benchmark datasets for Covid-19, especially in CXR images. 

After preprocessing phase, we obtained a dataset that contains CXR 
of Covid-19 and non-Covid-19 patients, although the number of datasets 
is inadequate to validate the model. This condition of limited data to 
resolve a problem often occurs as gathering a large dataset can be pro-
hibitively costly, especially data with X-ray images from hospitals in 
Indonesia. Consequently, the only choice is to work with a limited 
dataset and try to achieve as accurate predictions as possible. We started 
training a small network of images as training samples, without any 
regularisation to set up a preliminary study. This scheme produced a 
classification accuracy of overfitting which can be identified by looking 
at validation metrics, such as loss or accuracy. The validation metric 

Fig. 1. UNAS-Net platform.  
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stops reconstructing after a certain number of epochs and starts to 
decline afterwards. The training metric needs to be enhanced because 
the model attempts to determine the best fit for the training data. To 
mitigate this issue to improve the model and achieve better accuracy, we 
applied few methods, such as data augmentation and capacity reduction 
of the model to retain the training data. In our case, we used dropout 
layers that randomly eliminate particular features. In addition, as shown 
in Fig. 2, we applied fine-tuning to our pretrained network to obtain 
optimal accuracy. These strategies are designed to tackle the issue of 
performing image classification based on a small dataset, which 
included samples of images used in this study. 

An images possesses three dimensions: width, height, and colour 
depth. Before being fed into the network, because in this case the data 
collected are images with different formats, the data should be first 
formatted into a proper format for the network. Thus, we need a data- 
preprocessing phase. The steps are as follows; first, load the image 
files and decode them into RGB grids of pixels; second, convert them into 
floating-points and rescale the pixel values into a [0,1] interval, because 
neural networks deal with small input values. 

In this data preparation phase, such as image resizing and pixel 
scaling steps, they have been consistently applied to all the datasets that 
interact with the model. We performed this preprocessing strategy to 
remove bias and in variance the data. Models with high variance and 
low bias overfit the data, whereas models with low variance and high 
bias underfit the data. 

We used a reshaping image while preprocessing digits before feeding 
it into the network. Reshaping images helps arrange rows and columns 
to match the target shape. The reshaped image has the total number of 
coefficients as the initial image. In this phase, the data are pre-processed 
by reshaping them into a shape according to the requirements of the 
network and scaling them, so that all the values are in the [0, 1] interval. 
In addition, the reshaping phase will be very useful for the next phases in 
deep learning methods, e.g., transfer learning and fine-tuning processes 
(which will be explained later). 

In fact, few lung diseases refer to disorders affecting the lungs. 
However, as the focus was on Covid-19 detection, we classified lung 
diseases into; Covid-19 and non-Covid-19. However, the classification of 
images was performed and confirmed by experts. The dataset was 

divided into train and test (Table 2). Dataset splitting is necessary for the 
machine learning process to eliminate bias data. The dataset is classified 
into train and test, where 80% of the dataset or the training set and the 
remaining 20% is for the testing set. 

In our case, we tackled a binary-classification problem. The model 
network should end with a single unit where this unit will encode the 
probability which the network recognises as one class (Covid-19) or the 
other (non-Covid-19). The general scheme of a CNN model has a feature 
extractor in the first phase and then a classification phase (Fig. 3) Our 
DLA was designed based on the CNN model (Fig. 4). 

In general, the transposed convolutional and ReLU layers are the 
feature learning stage which is known as freeze layer, and the few last 
layers, the unfreeze layers, are the classifier, also known as the fine- 
tuning stage. The ReLu activation function transforms the value results 
of a neuron, by y = (0, x), and clamps down any negative values to 0, 
whereas the positive values remain untouched. The result of this 
mathematical transformation was considered as the output of the 
ongoing layer and input to the next layer. In addition, all the convolu-
tional layers used the same size of 224 × 224 pixel with 64 filters for 
each layer. 

The feature extraction phase can improve the accuracy of a model by 
extracting features from the image data. This phase decreases the 
dimensionality of image data by eliminating redundant data. Conse-
quently, it increases the training speed and obtains newly generated 
features by combining and/or transforming the original feature set. 

3.3. Deep transfer learning 

The general problem of image classification is defined as follows:  

• There are K possible image classes. A set {0, 1, …, K − 1} defines the 
labels of the different classes (example: 0 = “non-Covid-19′′ and 1 =
“Covid-19".)  

• We have a collection of N input images: {Xi} i {1, …, N }.  
• The classes of N images are known in advance: each image (Xi) is 

labelled by yi ∈ {0, 1, …, K − 1}.  
• The goal is to correctly classify a new image, whose class is not 

known. We want to find the right label. 

In CNN, the nodes in the hidden layers do not consistently distribute 
their output with every node in the next layer. Deep transfer learning 

Fig. 2. Flowchart of the proposed transfer learning framework.  

Table 1 
Source of datasets.  

Source No. of Images 

Covid-19 non-Covid-19 

[3] 481 173 
[21] 1387 330 
[1] 912 116 
UNAS-Net 850 0  

Table 2 
Classified number of images based on the Covid-19 dataset.  

Dataset Covid-19 non-Covid-19 Total 

Train 466 542 1008 
Test 210 262 472 
Total 676 804 1480  
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allows machines to recognise and extract features from images. This 
means that deep transfer-learning machines can discover features to 
look for in images by analysing sets of pictures. 

Using deep learning, the transfer-learning method can solve the 
image classification problem. Few state-of-the-art results of image 
classification refer to the works of [2,5,7,18,19,25]; which are based on 
transfer learning solutions. 

There are two different approaches in transfer-learning: model 
approach and pretrained model approach. However, in this phase, we 
choose to apply a model approach. For this purpose, we select a related 
predictive modeling problem that presents some relations between input 
data, output data and/or images learned during the mapping process 
from input to output data. The proposed model comprises layered 
compositions that learn original features at different layers, and these 
layers are eventually connected to the last layer. We use domain, task, 
and marginal probabilities to present the transfer-learning framework. 
The framework is defined as follows: domain D includes 2 tuple defining 
feature space χ and marginal probability distribution P (X), where X 
denotes sample data, X = {x1, …, xn }, xi ∈ χ , where xi denotes a 
specific vector. Hence, the domain can be represented as D = {, P (X)}. 
The transfer learning layers reconstruct images from a new domain task 
into a n-dimensional vector based on its hidden characters, thereby 
allowing to extract features from a new domain task and applying the 
knowledge from a source-domain task. Next, we develop a source model 
for the previous phase to guarantee that feature learning has been car-
ried out. Later, we reuse the model, which means that the source model 
can be used as the basis for a model on the next task of interest. Further 
phase is the tune model, as the model needs to be adjusted based on the 
input and output data. 

3.4. Data augmentation and fine-tuning 

A large dataset is important for a deep learning model, especially for 
its performance. Training a deep learning model based on a large dataset 

can result in an optimal model, and the data augmentation method 
might create image variations which help improve the ability of the fit 
model to generalise the model that has learned new images which have 
never been seen before. In our scheme, we apply image data augmen-
tation to the training dataset instead of the validation or test dataset. In 
addition, data augmentation increases the size of the dataset images, 
which would be larger than the original. We can augment the image data 
by flipping images horizontally or vertically. We used some common 
data augmentation techniques. The parameter settings for data 
augmentation were as follows: rotation range of 15% which means that 
a range within which pictures are randomly rotated, and zoom range of 
10% (maximum) for randomly zooming internal pictures, enabling 
horizontal flip randomly to flip half of the images horizontally and fill in 
the missing pixels with the nearest filled value, which refers to the 
technique used for filling in newly created pixels; the pixel can appear 
after a rotation or a width/height shift. 

Fine-tuning is widely used for model reuse and is complementary to 
the preceding process, which is feature extraction. It helps unfreeze head 
layers of basemodel for future extraction purpose and mutually re-train it 
with a low learning rate to make the network model more suitable for 
the problem. The role of fine-tuning will be as follows: First, feed the 
neural network with the training data, train_images and train_labels. 
Then, the network will discover the correlation between images and 
labels. Finally, call the network to generate predictions for test_images, 
and confirm whether these predictions match the labels from test_labels. 

The proposed model uses the SoftMax activation function in the fine- 
tuning phase which is used to determine the probability distribution of a 
set of numbers within an input vector. The output of function is a vector 
in which its set of values indicates the probability of an instance of a 
class. With regard to optimiser, Adam [11] with momentum value of 0.9 
is used in our algorithm. This optimiser updates weight parameters at 
the training and fine-tuning phases. We implemented a dropout layer to 
select the best training steps. In the training phase, our scheme generates 
a batch of images, called the training batch. The batch size is the number 

Fig. 3. Proposed DLA based on CNN.  

Fig. 4. Layers of the proposed model.  
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of samples processed before the model is updated. The number of epochs 
is the number of complete passes through the training dataset. The size 
of a batch should be equal to or greater than one and less than or equal to 
the number of samples in the training dataset. The Model was trained 
with a learning rate of 0.0001. However, the learning rate is a hyper-
parameter that manages the extent to which the model is modified in 
response to the predicted error each time the model weights are 
renewed. 

3.5. Detection and prediction 

A key issue to detect Covid-19 based on X-ray images is that the 
number of objects in the foreground can differ across images. The pro-
posed model presents a solution the classification issues of the pre-
scribed object detection problem. Subsequently, using CNN layers to 
extract feature maps, the region proposal network yields several win-
dows which are likely to accommodate an object. Then, the model re-
claims feature maps inside each window, resizes them into fixed sizes, or 
the region of interest (RoI) pooling, and predicts the class probability. 

Every pixel belongs to a particular class (either background or RoI) 
that is described by the same colour. Our scheme uses simple semantic 
segmentation with a threshold value where the pixel values will be 
contrasting for objects and background if there is a sharp contrast be-
tween them. Pixel values lower than or above the threshold value can be 
classified as an object or background. 

As a proof-of-concept, a prototype using a web application was 

developed using the Flask platform based on Python, hoping that it can 
enrich the Covid-19 dataset and would be helpful for researchers, doc-
tors, or paramedics in Indonesia. The purpose of this web application is 
to determine whether our proposed model can classify, detect and pre-
dict an X-ray image that has never been seen before. In other words, it 
was implemented to demonstrate the detection and prediction functions 
with regard to Covid-19 using a deep learning model (Fig. 5). 

3.6. Visualisation 

3.6.1. X-ray image enhancement 
The main objective of this procedure is to enhance the visualisation 

of X-ray images by using image enhancement methods, i.e., contrast 
limited adaptive histogram equalization (CLAHE) and Otsu thresh-
olding. The purpose of X-ray image enhancement, in our case, is to 
improve the visual interpretability of an X-ray image by intensifying the 
apparent distinction between the features in the image. 

The CLAHE technique is a histogram-based method used to enhance 
the contrast of an image. This technique calculates the histogram for the 
region around each pixel in the image, develops the local contrast and 
improves the edges in each region. 

Since adaptive histogram equalization (AHE) may overamplify the 
noise of an image, CLAHE avoids this by limiting the amplification 
which can be defined as follows: 

Fig. 5. Prototype of the UNAS-Net application.  
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β=
A
G

(
1+

α
100

(Smax − 1)
)

(1)  

where A is the size of area, G refers to the grayscale value, and α is the 
clip factor that serves as the addition of the limit of a histogram (from 
0 to 100). 

Even though CLAHE may take a high load, the enhanced image 
method is considerably better than the unprocessed one, because it 
shows the hidden features of an image by enhancing its edges and 
amplifying its visibility. In our case, we apply few input parameters to 
enhance an image: window size (WS) is the size of the rectangular area 
around the pixel to be refined, clip limit (CL) is the maximum number of 
pixels in the histogram, and clipping iterations (CI) that refer to the 
number of clipping repetitions. 

Otsu thresholding is a method to reform an image of grey to black 
and white depending on the threshold value ratio to improve the X-ray 
image quality. In our study, we apply Otsu thresholding by converting 
an image into a grey image and then binarising it. 

3.6.2. Saliency maps 
To guarantee that the proposed model points to reasonable aspects of 

the images [9,20], we performed a saliency map. It is estimated by 
computing the gradient of the output prediction with respect to the input 
image, i.e., supposing that a pixel is changed, how much will it change 
the prediction. In addition, to smooth out results of the saliency map, the 
image is blurred using a Gaussian kernel. In this phase, a score system 
based on two parameters is used to exhibit the disease severity level, i.e., 
geographic extent and degree of opacity, as reported by [22]. A score of 
0–4 is designated as pneumonia severity level for each lung determined 
based on the extent of involvement of ground-glass opacities as follows: 
0 for no involvement, 1 for < 25% involvement, 2 for 25%–50% 
involvement, 3 for 50%–75% involvement, and 4 for > 75% involve-
ment. The scores for each lung were enumerated to demonstrate the 
final severity score (ranging from 0 to 8, for right and left lungs 
collectively). The degree of opacity was scored as follows: 0, no opacity; 
1, ground glass opacity; 2, consolidation; and 3, white-out. Hence, the 
opacity score for both the left and right lungs ranged from 0 to 6. 

4. Performance evaluation and comparison 

In this section, we investigated and compared the proposed model, 
known as UNAS-Net, with few deep transfer-learning models such as 
Xception [2], Inception [19], DenseNet [7]), ResNet50 [5] and VGG16 
[18]. Moreover, we analysed CLAHE and saliency maps. 

The proposed model was designed using Keras and Tensorflow in a 
Python environment. All simulations were conducted on a computer 
server equipped with an Intel socket 36 core hyperthread, 32 GB of 
RAM, and graphics processing units. We measured and compared the 
classification performance of the models using the following metrics: 

• Accuracy. This is a metric to evaluate classification models, calcu-
lated as the ratio of number of correct predictions on the total 
number of predictions. 

Accuracy=
TP + TN

TP + FP + FN + TN
(2)  

where TP is True Positive, TN is True Negative, FP means False Positive, 
and FN refers to False Negative.  

• Sensitivity (Recall). This metric measures the rate of negatives that are 
correctly detected. 

Sensitivity=
TP

TP + FN
(3)    

• Specificity. This indicator is represented as the proportion of actual 
negatives, or otherwise stated as true negative rate. 

Specificity=
TN

FP + TN
(4)    

• F-score. This indicator is a measure of the accuracy of a binary model 
to compare diversity and similarity of performance. 

Precesion=
TP

TP + FP
(5)  

Fscore=
(
β2 + 1

)
× Precision × Sensitivity

β2 × Precision + Sensitivity
(6)    

• Area under curve (AUC). This metric measures the performance of the 
classifier. 

AUC =
Sensitivity + Specificity

2
(7)    

• Confusion matrix. It summarises of prediction results based on a 
classification problem, and shows ways in which the classification 
model is confused while making predictions. 

The performance results of all the trained models are listed in 
Table 3. In terms of accuracy, DenseNet attained 100%, followed by 
VGG16 and Inception with 98.18%, the proposed scheme achieved 
97.36%, and ResNet50 achieved a lower accuracy of 85.45%. This ac-
curacy level indicates model accuracy in classifying X-ray images as 
Covid-19 or non-Covid-19. This implies that in this training, the pro-
posed model, UNAS-Net, exhibits a classification accuracy of 97.36%. 

We compared the sensitivity (recall) of the trained models and 
noticed that the improvement in sensitivity caused by the use of data 
augmentation and fine-tuning methods is consistent with specificity. 
The correct sensitivity and specificity were obtained using DenseNet. 
This is because the DenseNet architecture manages the residual struc-
ture to its maximum by constructing every layer that is densely associ-
ated with its subsequent layers. 

UNAS-Net achieved 95.24% sensitivity and 100% specificity, which 
is equal to Inception and VGG16, in such a way that the proposed model 
is excellent at predicting, implying that Covid-19 or non-Covid-19 can 
be accurately detected. However, ResNet50 exhibits the lowest sensi-
tivity, which implies that Covid-19 cannot be detected by the model 
even when non-Covid-19 can be detected accurately. Consequently, it 
can lead to a higher false negative rate, where patients with Covid-19 
(positive) are predicted as non-Covid-19 (negative). 

The proposed model achieved an F-score of 98% which corresponded 
to Inception and VGG16. Thus, we can conclude that they exhibit good 
precision and sensitivity. Nonetheless, ResNet50 attained an F-score 
only 78%, indicating that it exhibits lower precision and lower sensi-
tivity in this study. 

In terms of the validation of training loss and accuracy, as shown in 
Fig. 6, the proposed model does not underfit much as ResNet50. At the 
basic level, the loss curve represents how good or bad a given model is 
classified. As we can see, the proposed model has a smaller loss, which is 

Table 3 
Comparison Results of models training on the dataset.  

Model Accuracy Sensitivity Specificity F-Score AUC 

UNAS-Net 0.9736 0.9524 1.00 0.98 0.9808 
Inception 0.9818 0.9524 1.00 0.98 0.9805 
Xception 0.9636 0.9524 0.9706 0.95 0.9987 
DenseNet 1.00 1.00 1.00 1.00 1.00 
ResNet50 0.8545 0.6667 0.9706 0.78 0.9263 
VGG16 0.9818 0.9524 1.00 0.98 0.9997  
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almost similar to that of VGG16. This means that they have a better 
classifier. Moreover, from the epoch of 0 to approximately 60, our 
validation loss is lower than the training loss. A quick observation is that 
this phenomenon is due to regularisation applied during the training 
phase, but not during the validation or testing phase. In addition, the 
training loss was measured at the time of any epoch, while the validation 
loss was measured after each epoch. It is feasible to enhance the model 
by increasing the number of epochs and batch size. However, ResNet50 
suffers in terms of performance from the initiation of training (Fig. 6(e)). 
For the area under the curve (AUC), the results obtained with regard to 

various layers of the models are shown in Fig. 7 DenseNet and VGG16 
have exhibited AUC values near 1, similar to our scheme. This implies 
that they possess an effective measurement process of distinguishing 
between the positive and negative classes. Inception and Xception have 
exhibited moderate results. In contrast, ResNet50 is likely to be a poor 
model because it has an AUC near to 0, which implies that ResNet50 
includes an ineffective measurement method of classification, or in other 
words, it has no class separation efficiency. 

Table 4 compares the confusion matrix among the proposed model 
(UNAS-Net), Inception, Xception, DenseNet, ResNet50 and VGG16. We 

Fig. 6. Training loss and accuracy comparison.  

Fig. 7. Auc comparison.  
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found that DenseNet achieved 100% classification accuracy. UNAS-Net 
outperformed ResNet50 and achieved the same results as those of 
Inception, Xception, and VGG16. The proposed model exhibits a true 
positive (TP) of 20, implying that 20 positive Covid-19 images are 
accurately classified and only one image is incorrectly classified as it 
belonged to the positive class. These results are comparable with those 
of Inception, Xception and VGG16. In addition, the proposed model has 
a true negative (TN) of 33, implying that 33 negative Covid-19 images 
were accurately classified. Moreover, as per ResNet50, 14 positive 
Covid-19 images are accurate, and 7 images are falsely classified. 
However, ResNet50 have correctly detected 33 of 34 negative Covid-19 
images. 

In terms of visualisation and image enhancement, we conducted 
several investigations on the qualitative analysis of the predicted scores 
using some parameters. As CLAHE enumerates a histogram to all pixels, 
its complexity becomes high and requires a certain amount of processing 
time to accomplish its work. We considered a wide range of values for 
input parameters to see and compare effects on an image. In this study, 
we used several different parameters: e.g., WS of 8–15, CL of 4–150, and 
CI of 1–5. However, the input parameters significantly affect the results 

(Fig. 8). Based on our experiments, we found that the optimal input 
parameter combination was WS = 100, CL = 150, and CI = 1 (Fig. 8(a), 
(b), and 8(c)). Moreover, the CLAHE image is the threshold value 
calculated using Otsu to load its CL value. Fig. 9 depicts enhanced X-ray 
images of the Covid-19 positive case with CLAHE threshold and Otsu 
threshold. 

Fig. 10 shows the saliency maps of the images that have never been 
observed by the model during the training phase. The images were 
correctly predicted by the model. For most of the results, the proposed 
model correctly points to the opaque areas of the lungs. The predictions 
are demonstrated with a saliency map produced by calculating the 
gradient of the output prediction and then blurred using a 5 x 5 Gaussian 
kernel. For instance, Fig. 10(a) shows a heatmap of an infant CXR of 
Covid-19 positive case with a geographic extent score of 1.475 and 
opacity of 0.9121. Moreover, as shown in Fig. 10(b), for an adult CXR, 
the proposed model predicts severity by generating a geographic extent 
score of 1.973 and opacity of 2.442. This implies that the proposed 
model can predict the ground glass by focusing on the lungs. 

The proposed work, UNAS-Net, focuses on predicting the ground 
glass and severity of the lungs based on a range of clinical indicators. The 

Table 4 
Confusion matrix.   

UNAS-Net Inception Xception DenseNet ResNet50 VGG16 

True False True False True False True False True False True False 

Positive 20 1 20 1 20 1 21 0 14 7 20 1 
Negative 33 1 34 0 33 1 34 0 33 1 34 0  

Fig. 8. CLAHE comparison between parameters WS: 100, CL: 150, CI: 1 and WS: 40, CL: 4, CI: 1.  
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proposed model can be integrated and enhanced to other models and 
potentially assist in making decisions for those who need it. 

The challenge is when the number of labelled images is small, and we 
need to create a model that helps label images and achieve acceptable 
performance. In our case, building a predictive model for Covid-19 
based on X-ray images with the lack of a public dataset, particularly 
Indonesian X-ray images, made it difficult to manage large-scale eval-
uations. The small number of dataset counters proper cohort selection, 
which is a limitation to this study. Nonetheless, we use a deep transfer- 
learning model, which was trained based on a large dataset with similar 
functions and was equipped with an unbiased Covid-19 feature 
extractor. Thus, it reduces overfitting of the proposed model. 

The performance evaluation can be improved with the condition that 
we are able to achieve a new cohort of labelled images to determine the 
generalisation of the proposed model. 

5. Conclusions 

A platform based on deep learning to predict Covid-19 severity in 
Indonesia was developed. Based on preliminary results, we observed 
several interesting observations during the performance evaluation. The 
overall performance metrics for DenseNet were perfect, and for UNAS- 
Net was adequately high, which is comparable to other models. The 
DenseNet model outperforms other models with regard to the classifi-
cation task. Data augmentation and fine-tuning successfully handed the 
network to enhance the overall performance, especially for our case with 
limited datasets. 

The results of the study on the CLAHE and Otsu algorithms shows 
that the CLAHE algorithm exhibits the best result for our system in terms 
of image visualisation. The only drawback of this algorithm is the slow 
running time. In addition, the proposed model focuses on classifying and 
predicting lung severity. 

Further work that can be considered is the improvement of the 
proposed model by enhancing quality and coherent images more, 
thereby tuning the hyper-parameters of the model, which can improve 
the accuracy. 
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